Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation
نویسندگان
چکیده
Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco's modified Eagle's medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs.
منابع مشابه
TIMP3: a physiological regulator of adult myogenesis.
Myogenic differentiation in adult muscle is normally suppressed and can be activated by myogenic cues in a subset of activated satellite cells. The switch mechanism that turns myogenesis on and off is not defined. In the present study, we demonstrate that tissue inhibitor of metalloproteinase 3 (TIMP3), the endogenous inhibitor of TNFalpha-converting enzyme (TACE), acts as an on-off switch for ...
متن کاملIdentification of Map4k4 as a novel suppressor of skeletal muscle differentiation.
Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-me...
متن کاملCSX/Nkx2.5 modulates differentiation of skeletal myoblasts and promotes differentiation into neuronal cells in vitro.
CSX/Nkx2.5 transcription factor plays a pivotal role in cardiac development; however, its role in development and differentiation of other organs has not been investigated. In this study, we used C2C12 myoblasts and human fetal primary myoblasts to investigate the function of Nkx2.5 in skeletal myogenesis. The expression levels of Nkx2.5 decreased as C2C12 myoblasts elongated and fused to form ...
متن کاملLow-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts.
Whole body vibration training is widely used in rehabilitation and sports activities to improve muscle strength, balance, and flexibility. However, the molecular mechanisms of vertical vibration (VV) training and their effect on the myogenesis of myoblasts remain undefined. This study was undertaken to address the hypothesis that VV can enhance the expression of ECM proteins and myogenic regula...
متن کاملMechanical stretch regulates microRNA expression profile via NF-κB activation in C2C12 myoblasts
MicroRNAs (miRNAs/miRs) and nuclear factor (NF)-κB activation are involved in mechanical stretch-induced skeletal muscle regeneration. However, there are a small number of miRNAs that have been reported to be associated with NF‑κB activation during mechanical stretch-induced myogenesis. In the present study, C2C12 myoblasts underwent cyclic mechanical stretch in vitro, to explore the relationsh...
متن کامل